
Event Handling

The Delegation Event Model:

The delegation event model, which defines standard and consistent mechanisms to generate

and process events. Its concept is quite simple: a source generates an event and sends it to

one or more listeners. In this scheme, the listener simply waits until it receives an event.

Once received, the listener processes the event and then returns. The advantage of this design

is that the application logic that processes events is cleanly separated from the user interface

logic that generates those events.

In the delegation event model, listeners must register with a source in order to receive an

event notification. This provides an important benefit: notifications are sent only to listeners

that want to receive them.

The following sections define events and describe the roles of sources and listeners.

Events:

In the delegation model, an event is an object that describes a state change in a source. It can

be generated as a consequence of a person interacting with the elements in a graphical user

interface. Some of the activities that cause events to be generated are pressing a button,

entering a character via the keyboard, selecting an item in a list, and clicking the mouse.

Many other user operations could also be cited as examples.

Events may also occur that are not directly caused by interactions with a user interface.For

example, an event may be generated when a timer expires, a counter exceeds a value, a

software or hardware failure occurs, or an operation is completed. You are free to define

events that are appropriate for your application.

Event Sources:

A source is an object that generates an event. This occurs when the internal state of that

object changes in some way. Sources may generate more than one type of event.A source

must register listeners in order for the listeners to receive notifications about a specific type

of event. Each type of event has its own registration method.Here is the general form:

 public void addTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the event listener.

A source must also provide a method that allows a listener to unregister an interest in a

specific type of event. The general form of such a method is this:

 public void removeTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the event listener.

Event Listeners:

A listener is an object that is notified when an event occurs. It has two major

requirements.First, it must have been registered with one or more sources to receive

notifications about specific types of events. Second, it must implement methods to receive

and process these notifications.The methods that receive and process events are defined in a

set of interfaces found in java.awt.event.

Event Classes:

 The ActionEvent Class:

An ActionEvent is generated when a button is pressed, a list item is double-clicked,or a

menu item is selected. The ActionEvent class defines four integer constants that can be used

to identify any modifiers associated with an action event: ALT_MASK,CTRL_MASK,

META_MASK, and SHIFT_MASK. In addition, there is an integer constant,

ACTION_PERFORMED, which can be used to identify action events.

ActionEvent has these three constructors:

ActionEvent(Object src, int type, String cmd)

ActionEvent(Object src, int type, String cmd, int modifiers)

ActionEvent(Object src, int type, String cmd, long when, int modifiers)

Here, src is a reference to the object that generated this event. The type of the event is

specified by type, and its command string is cmd. The argument modifiers indicates which

modifier keys (ALT, CTRL, META, and/or SHIFT) were pressed when the event was

generated. The when parameter specifies when the event occurred. The third

constructor was added by Java 2, version 1.4.

You can obtain the command name for the invoking ActionEvent object by using

the getActionCommand() method, shown here:

 String getActionCommand()

For example, when a button is pressed, an action event is generated that has a command

name equal to the label on that button.

The ItemEvent Class

An ItemEvent is generated when a check box or a list item is clicked or when a checkable

menu item is selected or deselected. (Check boxes and list boxes are described later in this

tutorial.) There are two types of item events, which are identified by the following integer

constants:

 DESELECTED The user deselected an item.

 SELECTED The user selected an item.

In addition, ItemEvent defines one integer constant, ITEM_STATE_CHANGED,that

signifies a change of state.

ItemEvent has this constructor:

 ItemEvent(ItemSelectable src, int type, Object entry, int state)

Here, src is a reference to the component that generated this event. For example, this might

be a list or choice element. The type of the event is specified by type. The specific item that

generated the item event is passed in entry. The current state of that item is in state.The

getItem() method can be used to obtain a reference to the item that generated an event. Its

signature is shown here:

 Object getItem()

The getItemSelectable() method can be used to obtain a reference to the ItemSelectable

object that generated an event. Its general form is shown here:

 ItemSelectable getItemSelectable()

Lists and choices are examples of user interface elements that implement the ItemSelectable

interface.The getStateChange() method returns the state change (i.e., SELECTED

orDESELECTED) for the event. It is shown here: int getStateChange()

The KeyEvent Class

A KeyEvent is generated when keyboard input occurs. There are three types of key events,

which are identified by these integer constants: KEY_PRESSED,KEY_RELEASED, and

KEY_TYPED. The first two events are generated when any key is pressed or released. The

last event occurs only when a character is generated.Remember, not all key presses result in

characters. For example, pressing the SHIFT key does not generate a character. There are

many other integer constants that are defined by KeyEvent. For example,VK_0 through

VK_9 and VK_A through VK_Z define the ASCII equivalents of the

numbers and letters. Here are some others:

VK_ENTER VK_ESCAPE VK_CANCEL VK_UP

VK_DOWN VK_LEFT VK_RIGHT VK_PAGE_DOWN

VK_PAGE_UP VK_SHIFT VK_ALT VK_CONTROL

THE JAVA LIBRARY

The VK constants specify virtual key codes and are independent of any modifiers, such as

control, shift, or alt. KeyEvent is a subclass of InputEvent. Here are two of its constructors:

 KeyEvent(Component src, int type, long when, int modifiers, int code)

 KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)

Here, src is a reference to the component that generated the event. The type of the event is

specified by type. The system time at which the key was pressed is passed in when. The

modifiers argument indicates which modifiers were pressed when this key event occurred.The

virtual key code, such as VK_UP, VK_A, and so forth, is passed in code. The character

equivalent (if one exists) is passed in ch. If no valid character exists, then ch contains

CHAR_UNDEFINED. For KEY_TYPED events, code will contain VK_UNDEFINED.

The KeyEvent class defines several methods, but the most commonly used ones are

getKeyChar(), which returns the character that was entered, and getKeyCode(), which

returns the key code. Their general forms are shown here:

 char getKeyChar()

 int getKeyCode()

If no valid character is available, then getKeyChar() returns CHAR_UNDEFINED.

When a KEY_TYPED event occurs, getKeyCode() returns VK_UNDEFINED.

The MouseEvent Class

There are eight types of mouse events. The MouseEvent class defines the following integer

constants that can be used to identify them:

MOUSE_CLICKED The user clicked the mouse.

MOUSE_DRAGGED The user dragged the mouse.

MOUSE_ENTERED The mouse entered a component.

MOUSE_EXITED The mouse exited from a component.

MOUSE_MOVED The mouse moved.

MOUSE_PRESSED The mouse was pressed.

MOUSE_RELEASED The mouse was released.

MOUSE_WHEEL The mouse wheel was moved (Java 2, v1.4).

MouseEvent is a subclass of InputEvent. Here is one of its constructors

.

MouseEvent(Component src, int type, long when, int modifiers,int x, int y, int clicks,

boolean triggersPopup)

Here, src is a reference to the component that generated the event. The type of the event is

specified by type. The system time at which the mouse event occurred is passed in when. The

modifiers argument indicates which modifiers were pressed when a mouse event occurred.

The coordinates of the mouse are passed in x and y. The click count is passed in clicks. The

triggersPopup flag indicates if this event causes a pop-up menu to appear on this platform.

Java 2, version 1.4 adds a second constructor which also allows the button that caused the

event to be specified. The most commonly used methods in this class are getX() and getY().

These return the X and Y coordinates of the mouse when the event occurred. Their forms

are shown here:

 int getX()

 int getY()

The TextEvent Class:

Instances of this class describe text events. These are generated by text fields and text areas

when characters are entered by a user or program. TextEvent defines the integer constant

TEXT_VALUE_CHANGED.

The one constructor for this class is shown here:

 TextEvent(Object src, int type)

Here, src is a reference to the object that generated this event. The type of the event is

specified by type.The TextEvent object does not include the characters currently in the text

component that generated the event. Instead, your program must use other methods

associated with the text component to retrieve that information. This operation differs from

other event objects discussed in this section. For this reason, no methods are discussed here

for the TextEvent class. Think of a text event notification as a signal to a listener that it

should retrieve information from a specific text component.

The WindowEvent Class:

There are ten types of window events. The WindowEvent class defines integer constants that

can be used to identify them. The constants and their meanings are shown here:

WINDOW_ACTIVATED The window was activated.

WINDOW_CLOSED The window has been closed.

WINDOW_CLOSING The user requested that the window be closed.

WINDOW_DEACTIVATED The window was deactivated.

WINDOW_DEICONIFIED The window was deiconified.

WINDOW_GAINED_FOCUS The window gained input focus.

WINDOW_ICONIFIED The window was iconified.

WINDOW_LOST_FOCUS The window lost input focus.

WINDOW_OPENED The window was opened.

WINDOW_STATE_CHANGED The state of the window changed.

WindowEvent is a subclass of ComponentEvent. It defines several constructors.The first is

 WindowEvent(Window src, int type)

Here, src is a reference to the object that generated this event. The type of the event is type.

Java 2, version 1.4 adds the next three constructors.

WindowEvent(Window src, int type, Window other)

WindowEvent(Window src, int type, int fromState, int toState)

WindowEvent(Window src, int type, Window other, int fromState, int toState)

THE JAVA LIBRARY

Here, other specifies the opposite window when a focus event occurs. The fromState

specifies the prior state of the window and toState specifies the new state that the window

will have when a window state change occurs.

Sources of Events:

some of the user interface components that can generate the events are listed below

Event Listener Interfaces:

The delegation event model has two parts: sources and listeners. Listeners are created by

implementing one or more of the interfaces defined by the java.awt.event package. When an

event occurs, the event source invokes the appropriate method defined by the listener and

provides an event object as its argument.

The ActionListener Interface:

This interface defines the actionPerformed() method that is invoked when an action event

occurs. Its general form is shown here:

 void actionPerformed(ActionEvent ae)

The AdjustmentListener Interface:

This interface defines the adjustmentValueChanged() method that is invoked when an

adjustment event occurs. Its general form is shown here:

 void adjustmentValueChanged(AdjustmentEvent ae)

The ItemListener Interface:

This interface defines the itemStateChanged() method that is invoked when the state of an

item changes. Its general form is shown here:

 void itemStateChanged(ItemEvent ie)

The KeyListener Interface:

This interface defines three methods. The keyPressed() and keyReleased() methods are

invoked when a key is pressed and released, respectively. The keyTyped() method is

invoked when a character has been entered.

For example, if a user presses and releases the A key, three events are generated in sequence:

key pressed, typed, and released. If a user presses and releases the HOME key, two key

events are generated in sequence: key pressed and released. The general forms of these

methods are shown here:

 void keyPressed(KeyEvent ke)

 void keyReleased(KeyEvent ke)

 void keyTyped(KeyEvent ke)

The MouseListener Interface:

This interface defines five methods. If the mouse is pressed and released at the same point,

mouseClicked() is invoked. When the mouse enters a component, the mouseEntered()

method is called. When it leaves, mouseExited() is called. The mousePressed() and

mouseReleased() methods are invoked when the mouse is pressed and released,

respectively.The general forms of these methods are shown here:

 void mouseClicked(MouseEvent me)

 void mouseEntered(MouseEvent me)

 void mouseExited(MouseEvent me)

 void mousePressed(MouseEvent me)

 void mouseReleased(MouseEvent me)

The MouseMotionListener Interface:

This interface defines two methods. The mouseDragged() method is called multiple times as

the mouse is dragged. The mouseMoved() method is called multiple times as the mouse is

moved. Their general forms are shown here:

 void mouseDragged(MouseEvent me)

 void mouseMoved(MouseEvent me)

THE JAVA LIBRARY

The WindowListener Interface:

This interface defines seven methods. The windowActivated() and windowDeactivated()

methods are invoked when a window is activated or deactivated, respectively. If a window is

iconified, the windowIconified() method is called. When a window is deiconified,the

windowDeiconified() method is called. When a window is opened or closed,the

windowOpened() or windowClosed() methods are called, respectively. The

windowClosing() method is called when a window is being closed. The general forms of

these methods are

 void windowActivated(WindowEvent we)

 void windowClosed(WindowEvent we)

 void windowClosing(WindowEvent we)

 void windowDeactivated(WindowEvent we)

 void windowDeiconified(WindowEvent we)

 void windowIconified(WindowEvent we)

 void windowOpened(WindowEvent we)

The TextListener Interface:

This interface defines the textChanged() method that is invoked when a change occurs in a

text area or text field. Its general form is shown here:

 void textChanged(TextEvent te)

Handling Mouse Events:

// Demonstrate the mouse event handlers.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="MouseEvents" width=300 height=100>

</applet>

*/

public class MouseEvents extends Applet

implements MouseListener, MouseMotionListener

{

 String msg = "";

 int mouseX = 0, mouseY = 0; // coordinates of mouse

 public void init()

 {

 addMouseListener(this);

 addMouseMotionListener(this);

 }

 // Handle mouse clicked.

 public void mouseClicked(MouseEvent me)

 {

 // save coordinates

 mouseX = 0;

 mouseY = 10;

 msg = "Mouse clicked.";

 repaint();

 }

 // Handle mouse entered.

 public void mouseEntered(MouseEvent me)

 {

 // save coordinates

 mouseX = 0;

 mouseY = 10;

 msg = "Mouse entered.";

 repaint();

 }

 // Handle mouse exited.

 public void mouseExited(MouseEvent me)

 {

 // save coordinates

 mouseX = 0;

 mouseY = 10;

 msg = "Mouse exited.";

 repaint();

 }

 // Handle button pressed.

 public void mousePressed(MouseEvent me)

 {

 // save coordinates

 mouseX = me.getX();

 mouseY = me.getY();

 msg = "Down";

 repaint();

 }

 // Handle button released.

 public void mouseReleased(MouseEvent me)

 {

 // save coordinates

 mouseX = me.getX();

 mouseY = me.getY();

 msg = "Up";

 repaint();

 }

 // Handle mouse dragged.

 public void mouseDragged(MouseEvent me)

 {

 // save coordinates

 mouseX = me.getX();

 mouseY = me.getY();

 msg = "*";

 showStatus("Dragging mouse at " + mouseX + ", " + mouseY);

 repaint();

 }

 // Handle mouse moved.

 public void mouseMoved(MouseEvent me)

 {

 // show status

 showStatus("Moving mouse at " + me.getX() + ", " + me.getY());

 }

 // Display msg in applet window at current X,Y location.

 public void paint(Graphics g)

 {

 g.drawString(msg, mouseX, mouseY);

 }

}//end

Output:

Explanation:

Let’s look closely at this example. The MouseEvents class extends Applet and implements

both the MouseListener and MouseMotionListener interfaces. These two interfaces contain

methods that receive and process the various types of mouse events. Notice that the applet is

both the source and the listener for these events.This works because Component, which

supplies the addMouseListener() and

addMouseMotionListener() methods, is a superclass of Applet. Being both the source and

the listener for events is a common situation for applets. Inside init(), the applet registers

itself as a listener for mouse events. This is done by using addMouseListener() and

addMouseMotionListener(), which, as mentioned,

are members of Component. They are shown here:

 void addMouseListener(MouseListener ml)

 void addMouseMotionListener(MouseMotionListener mml)

Here, ml is a reference to the object receiving mouse events, and mml is a reference to the

object receiving mouse motion events. In this program, the same object is used for both.The

applet then implements all of the methods defined by the MouseListener and

MouseMotionListener interfaces. These are the event handlers for the various mouse events.

Each method handles its event and then returns.

Handling Keyboard Events:

 Type of event generated from keyboard is KeyEvent. Listerner to be registered to receive

notification is addKeyListener(ref).There is one other requirement that your program must

meet before it can process keyboard events: it must request input focus. To do this, call

requestFocus(), which is defined by Component. To process the KeyEvent(i.e handle the

event)the interface to be implemented is KeyListener .This interface defines three methods.

The keyPressed() and keyReleased() methods are invoked when a key is pressed and

released, respectively. The keyTyped() method is invoked when a character has been

entered.

For example, if a user presses and releases the A key, three events are generated in

sequence: key pressed, typed, and released.

// Demonstrate the key event handlers.

 import java.awt.*;

 import java.awt.event.*;

 import java.applet.*;

 /*

 <applet code="SimpleKey" width=300 height=100>

 </applet>

 */

 public class SimpleKey extends Applet

 implements KeyListener

 {

 String msg = "";

 int X = 10, Y = 20; // output coordinates

 public void init()

 {

 addKeyListener(this);

 requestFocus(); // request input focus

 }

 public void keyPressed(KeyEvent ke)

 {

 showStatus("Key Down");

 }

 public void keyReleased(KeyEvent ke)

 {

 showStatus("Key Up");

 }

 public void keyTyped(KeyEvent ke)

 {

 msg += ke.getKeyChar();

 repaint();

 }

 // Display keystrokes.

 public void paint(Graphics g)

 {

 g.drawString(msg, X, Y);

 }

}

Output:

Adapter Classes:

Java provides a special feature, called an adapter class, that can simplify the creation of event

handlers in certain situations. An adapter class provides an empty implementation of all

methods in an event listener interface. Adapter classes are useful when you want to receive

and process only some of the events that are handled by a particular event listener interface.

You can define a new class to act as an event listener by extending one of the adapter classes

and implementing only those events in which you are interested.

 For example, the MouseMotionAdapter class has two methods, mouseDragged() and

mouseMoved(). The signatures of these empty methods are exactly as defined in the

MouseMotionListener interface. If you were interested in only mouse drag events, then you

could simply extend MouseMotionAdapter and implement mouseDragged().

// Demonstrate an adapter class.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="AdapterDemo" width=300 height=100>

</applet>

*/

public class AdapterDemo extends Applet {

public void init() {

addMouseListener(new MyMouseAdapter(this));

addMouseMotionListener(new MyMouseMotionAdapter(this));

}

}

class MyMouseAdapter extends MouseAdapter {

AdapterDemo adapterDemo;

public MyMouseAdapter(AdapterDemo adapterDemo) {

this.adapterDemo = adapterDemo;

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me) {

adapterDemo.showStatus("Mouse clicked");

}

}

class MyMouseMotionAdapter extends MouseMotionAdapter {

AdapterDemo adapterDemo;

public MyMouseMotionAdapter(AdapterDemo adapterDemo) {

this.adapterDemo = adapterDemo;

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me) {

adapterDemo.showStatus("Mouse dragged");

}

}

AWT(Abstract Window Toolkit)

Component:
At the top of the AWT hierarchy is the Component class. Component is an abstract class

that encapsulates all of the attributes of a visual component. All user interface elements that

are displayed on the screen and that interact with the user are subclasses of Component.

It defines over a hundred public methods that are responsible for managing events, such as

mouse and keyboard input, positioning and sizing the window, and repainting. A

Component object is responsible for remembering the current foreground and background

colors and the currently selected text font.

Container:
The Container class is a subclass of Component. Other Container objects can be stored

inside of a Container. This makes for a multileveled containment system. A container is

responsible for laying out (that is, positioning) any components that it contains. It does this

through the use of various layout managers.

Panel:
The Panel class is a concrete subclass of Container. It doesn’t add any new methods; it

simply implements Container. Panel is the superclass for Applet. A Panel is a window that

does not contain a title bar, menu bar, or border. This is why you don’t see these items when

an applet is run inside a browser. When you run an applet using an applet viewer, the applet

viewer provides the title and border. Other components can be added to a Panel object by its

add() method (inherited from Container).

Window:
The Window class creates a top-level window. Generally, you won’t create Window objects

directly. Instead, you will use a subclass of Window called Frame.

Frame:
Frame encapsulates what is commonly thought of as a “window.” It is a subclass of Window

and has a title bar, menu bar, borders, and resizing corners.

Canvas:
Although it is not part of the hierarchy for applet or frame windows. Canvas encapsulates a

blank window upon which you can draw.

Using AWT Controls,Layout Managers,and Menus

Controls are components that allow a user to interact with your application in various ways—

for example, a commonly used control is the push button. A layout manager automatically

positions components within a container. Thus, the appearance of a window is determined by

a combination of the controls that it contains and the layout manager used to position them.

Control Fundamentals:
The AWT supports the following types of controls:

 ■ Labels

 ■ Push buttons

 ■ Check boxes

 ■ Choice lists

 ■ Lists

 ■ Scroll bars

 ■ Text editing

These controls are subclasses of Component.

Adding and Removing Controls:

To include a control in a window, you must add it to the window. To do this, you must first

create an instance of the desired control and then add it to a window by calling add(),which

is defined by Container. The add() method has several forms. The following form is the one

that is used for the first part of this chapter:

 Component add(Component compObj)

Here, compObj is an instance of the control that you want to add.

Sometimes you will want to remove a control from a window when the control is no longer

needed. To do this, call remove(). This method is also defined by Container.It has this

general form:

 void remove(Component obj)

Here, obj is a reference to the control you want to remove.

Labels:
The easiest control to use is a label. A label is an object of type Label, and it contains a

string, which it displays. Labels are passive controls that do not support any interaction with

the user. Label defines the following constructors:

Label()

Label(String str)

Label(String str, int how)

The first version creates a blank label. The second version creates a label that contains the

string specified by str. This string is left-justified. The third version creates a label that

contains the string specified by str using the alignment specified by how. The value of how

must be one of these three constants: Label.LEFT, Label.RIGHT, or Label.CENTER.

 You can set or change the text in a label by using the setText() method. You can obtain the

current label by calling getText(). These methods are shown here:

void setText(String str)

String getText()

// Demonstrate Labels

import java.awt.*;

import java.applet.*;

/*

<applet code="LabelDemo" width=300 height=200>

</applet>

*/

public class LabelDemo extends Applet

{

 public void init()

 {

 Label one = new Label("One");

 Label two = new Label("Two");

 Label three = new Label("Three");

 // add labels to applet window

 add(one);

 add(two);

 add(three);

 }

}

Output:

Using Buttons
The most widely used control is the push button. A push button is a component that contains

a label and that generates an event when it is pressed. Push buttons are objects of type

Button. Button defines these two constructors:

Button()

Button(String str)

The first version creates an empty button. The second creates a button that contains str as a

label.

After a button has been created, you can set its label by calling setLabel(). You can retrieve

its label by calling getLabel(). These methods are as follows:

void setLabel(String str)

String getLabel()

Here, str becomes the new label for the button.

Handling Buttons:
Each time a button is pressed,an ActionEvent is generated. This is sent to any listeners that

previously registered an interest in receiving action event notifications from that component.

Each listener implements the ActionListener interface. That interface defines the

actionPerformed() method, which is called when an event occurs. An ActionEvent object

is supplied as the argument to this method.

// Demonstrate Buttons

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ButtonDemo" width=250 height=150>

</applet>

*/

public class ButtonDemo extends Applet implements ActionListener

{

 String msg = "";

 Button yes, no, maybe;

 public void init()

{

 yes = new Button("Yes");

 no = new Button("No");

 maybe = new Button("Undecided");

 add(yes);

 add(no);

 add(maybe);

 yes.addActionListener(this);

 no.addActionListener(this);

 maybe.addActionListener(this);

}

public void actionPerformed(ActionEvent ae)

{

 String str = ae.getActionCommand();

 if(str.equals("Yes"))

 {

 msg = "You pressed Yes.";

 }

 else if(str.equals("No"))

 {

 msg = "You pressed No.";

 }

 else

 {

 msg = "You pressed Undecided.";

 }

 repaint();

}

 public void paint(Graphics g)

{

 g.drawString(msg, 6, 100);

 }

}

Output:

Check Boxes:
A check box is a control that is used to turn an option on or off. It consists of a small box that

can either contain a check mark or not. There is a label associated with each check box that

describes what option the box presents.

Checkbox supports these constructors:

Checkbox()

Checkbox(String str)

Checkbox(String str, boolean on)

Checkbox(String str, boolean on, CheckboxGroup cbGroup)

Checkbox(String str, CheckboxGroup cbGroup, boolean on)

The first form creates a check box whose label is initially blank. The state of the check box is

unchecked. The second form creates a check box whose label is specified by str. The state of

the check box is unchecked. The third form allows you to set the initial state of the check

box. If on is true, the check box is initially checked; otherwise, it is cleared. The fourth and

fifth forms create a check box whose label is specified by str and whose group is specified by

cbGroup. If this check box is not part of a group, then cbGroup must be null. (Check box

groups are described in the next section.) The value of on determines the initial state of the

check box.

To retrieve the current state of a check box, call getState(). To set its state, call setState().

You can obtain the current label associated with a check box by calling getLabel(). To set

the label, call setLabel(). These methods are as follows:

boolean getState()

void setState(boolean on)

String getLabel()

void setLabel(String str)

Here, if on is true, the box is checked. If it is false, the box is cleared. The string passed

in str becomes the new label associated with the invoking check box.

Handling Check Boxes:

Each time a check box is selected or deselected, an item event is generated. This is sent to

any listeners that previously registered an interest in receiving item event notifications from

that component. Each listener implements the ItemListener interface. That interface defines

the itemStateChanged() method. An ItemEvent object is supplied as the argument to this

method. It contains information about the event.

// Demonstrate check boxes.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="CheckboxDemo" width=250 height=200>

</applet>

*/

public class CheckboxDemo extends Applet implements ItemListener

{

 String msg = "";

 Checkbox Win98, winNT, solaris, mac;

 public void init()

 {

 Win98 = new Checkbox("Windows 98/XP", null, true);

 winNT = new Checkbox("Windows NT/2000");

 solaris = new Checkbox("Solaris");

 mac = new Checkbox("MacOS");

 add(Win98);

 add(winNT);

 add(solaris);

 add(mac);

 Win98.addItemListener(this);

 winNT.addItemListener(this);

 solaris.addItemListener(this);

 mac.addItemListener(this);

 }

 public void itemStateChanged(ItemEvent ie)

 {

 repaint();

 }

 public void paint(Graphics g)

 {

 msg = "Current state: ";

 g.drawString(msg, 6, 80);

 msg = " Windows 98/XP: " + Win98.getState();

 g.drawString(msg, 6, 100);

 msg = " Windows NT/2000: " + winNT.getState();

 g.drawString(msg, 6, 120);

 msg = " Solaris: " + solaris.getState();

 g.drawString(msg, 6, 140);

 msg = " MacOS: " + mac.getState();

 g.drawString(msg, 6, 160);

 }

}

Output:

CheckboxGroup:
It is possible to create a set of mutually exclusive check boxes in which one and only one

check box in the group can be checked at any one time. These check boxes are often called

radio buttons.

Check box groups are objects of type CheckboxGroup. Only the default constructor is

defined, which creates an empty group.You can determine which check box in a group is

currently selected by calling getSelectedCheckbox(). You can set a check box by calling

setSelectedCheckbox(). These methods are as follows:

Checkbox getSelectedCheckbox()

void setSelectedCheckbox(Checkbox which)

Here, which is the check box that you want to be selected.

// Demonstrate check box group.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="CBGroup" width=250 height=200>

</applet>

*/

public class CBGroup extends Applet implements ItemListener

{

 String msg = "";

 Checkbox Win98, winNT, solaris, mac;

 CheckboxGroup cbg;

 public void init()

 {

 setBackground(Color.gray);

 cbg = new CheckboxGroup();

 Win98 = new Checkbox("Windows 98/XP", cbg, true);

 winNT = new Checkbox("Windows NT/2000", cbg, false);

 solaris = new Checkbox("Solaris", cbg, false);

 mac = new Checkbox("MacOS", cbg, false);

 add(Win98);

 add(winNT);

 add(solaris);

 add(mac);

 Win98.addItemListener(this);

 winNT.addItemListener(this);

 solaris.addItemListener(this);

 mac.addItemListener(this);

 }

 public void itemStateChanged(ItemEvent ie)

 {

 repaint();

 }

 public void paint(Graphics g)

 {

 msg = "Current selection: ";

 msg += cbg.getSelectedCheckbox().getLabel();

 g.drawString(msg, 6, 100);

 }

}

Output:

Choice Controls:

The Choice class is used to create a pop-up list of items from which the user may choose.

Thus, a Choice control is a form of menu. Choice only defines the default constructor, which

creates an empty list. To add a selection to the list, call add(). It has this general form:

void add(String name)

Here, name is the name of the item being added. Items are added to the list in the order in

which calls to add() occur.

To determine which item is currently selected, you may call either getSelectedItem() or

getSelectedIndex(). These methods are shown here:

String getSelectedItem()

int getSelectedIndex()

The getSelectedItem() method returns a string containing the name of the

item.getSelectedIndex() returns the index of the item. The first item is at index 0. By

default, the first item added to the list is selected. To obtain the number of items in the list,

call getItemCount(). You can set the currently selected item using the select() method with

either a zero-based integer index or a string that will match a name in the list. These methods

are shown here:

int getItemCount()

void select(int index)

void select(String name)

Given an index, you can obtain the name associated with the item at that index by calling

getItem(), which has this general form:

String getItem(int index)

Here, index specifies the index of the desired item.

Handling Choice Lists
Each time a choice is selected, an item event is generated. This is sent to any listeners that

previously registered an interest in receiving item event notifications from that component.

Each listener implements the ItemListener interface. That interface defines the

itemStateChanged() method. An ItemEvent object is supplied as the argument to this

method.

// Demonstrate Choice lists.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ChoiceDemo" width=300 height=180>

</applet>

*/

public class ChoiceDemo extends Applet implements ItemListener

{

 Choice os, browser;

 String msg = "";

 public void init()

 {

 os = new Choice();

 browser = new Choice();

 // add items to os list

 os.add("Windows 98/XP");

 os.add("Windows NT/2000");

 os.add("Solaris");

 os.add("MacOS");

 // add items to browser list

 browser.add("Netscape 3.x");

 browser.add("Netscape 4.x");

 browser.add("Netscape 5.x");

 browser.add("Netscape 6.x");

 browser.add("Internet Explorer 4.0");

 browser.add("Internet Explorer 5.0");

 browser.add("Internet Explorer 6.0");

 browser.add("Lynx 2.4");

 browser.select("Netscape 4.x");

 // add choice lists to window

 add(os);

 add(browser);

 // register to receive item events

 os.addItemListener(this);

 browser.addItemListener(this);

 }

 public void itemStateChanged(ItemEvent ie)

 {

 repaint();

 }

 // Display current selections.

 public void paint(Graphics g)

 {

 msg = "Current OS: ";

 msg += os.getSelectedItem();

 g.drawString(msg, 6, 120);

 msg = "Current Browser: ";

 msg += browser.getSelectedItem();

 g.drawString(msg, 6, 140);

 }

}

Output:

Using Lists:

The List class provides a compact, multiple-choice, scrolling selection list. It can also be

created to allow multiple selections. List provides these constructors:

List()

List(int numRows)

List(int numRows, boolean multipleSelect)

The first version creates a List control that allows only one item to be selected at any one

time. In the second form, the value of numRows specifies the number of entries in the list that

will always be visible (others can be scrolled into view as needed). In the third form, if

multipleSelect is true, then the user may select two or more items at a time. If it is false, then

only one item may be selected. To add a selection to the list, call add(). It has the following

two forms:

void add(String name)

Here, name is the name of the item added to the list. This form adds items to the end of the

list.

you can determine which item is currently selected by calling either getSelectedItem() or

getSelectedIndex(). These methods are shown here:

String getSelectedItem()

int getSelectedIndex()

The getSelectedItem() method returns a string containing the name of the item.

getSelectedIndex() returns the index of the item.

For lists that allow multiple selection, you must use either getSelectedItems() or

getSelectedIndexes(), shown here, to determine the current selections:

String[] getSelectedItems()

int[] getSelectedIndexes()

getSelectedItems() returns an array containing the names of the currently selected items.

getSelectedIndexes() returns an array containing the indexes of the currently selected items.

You can set the currently selected item by using the select() method with a zero-based

integer index. These methods are shown here:

void select(int index)

Given an index, you can obtain the name associated with the item at that index by calling

getItem(), which has this general form:

String getItem(int index)

Here, index specifies the index of the desired item.

Handling Lists:
To process list events, you will need to implement the ActionListener interface.Each time a

List item is double-clicked, an ActionEvent object is generated. Its getActionCommand()

method can be used to retrieve the name of the newly selected item.

// Demonstrate Lists.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ListDemo" width=300 height=180>

</applet>

*/

public class ListDemo extends Applet implements ActionListener

{

 List os, browser;

 String msg = "";

 public void init()

 {

 os = new List(4, true);

 browser = new List(4, false);

 // add items to os list

 os.add("Windows 98/XP");

 os.add("Windows NT/2000");

 os.add("Solaris");

 os.add("MacOS");

 // add items to browser list

 browser.add("Netscape 3.x");

 browser.add("Netscape 4.x");

 browser.add("Netscape 5.x");

 browser.add("Netscape 6.x");

 browser.add("Internet Explorer 4.0");

 browser.add("Internet Explorer 5.0");

 browser.add("Internet Explorer 6.0");

 browser.add("Lynx 2.4");

 browser.select(1);

 // add lists to window

 add(os);

 add(browser);

 // register to receive action events

 os.addActionListener(this);

 browser.addActionListener(this);

 }

 public void actionPerformed(ActionEvent ae)

 {

 repaint();

 }

 // Display current selections.

 public void paint(Graphics g)

 {

 int idx[];

 msg = "Current OS: ";

 idx = os.getSelectedIndexes();

 for(int i=0; i<idx.length; i++)

 {

 msg += os.getItem(idx[i]) + " ";

 }

 g.drawString(msg, 6, 120);

 msg = "Current Browser: ";

 msg += browser.getSelectedItem();

 g.drawString(msg, 6, 140);

 }

}

Output:

Managing Scroll Bars:
Scroll bars are used to select continuous values between a specified minimum and maximum.

Scroll bars may be oriented horizontally or vertically. Scrollbar defines the following

constructors:

 Scrollbar()

 Scrollbar(int style)

 Scrollbar(int style, int initialValue, int thumbSize, int min, int max)

 style- Scrollbar.VERTICAL a vertical scroll. style- Scrollbar.HORIZONTAL, the scroll bar

is horizontal. initialValue-initail value of scroll bar. thumbSize-height of thumb. min and

max-minimum and maximum values for the scroll bar.

Methods in Scrollbar:

 If you construct a scroll bar by using one of the first two constructors, then you need to set

its parameters by using setValues(), shown here, before it can be used:

 void setValues(int initialValue, int thumbSize, int min, int max)

To obtain the current value of the scroll bar, call getValue(). It returns the current setting. To

set the current value, call setValue(). These methods are as follows:

 int getValue()

 void setValue(int newValue)

Here, newValue specifies the new value for the scroll bar.

Handling Scroll Bars:
Type of event generated is AdjustmentEvent.To processor or Handle the AdjustmentEvent

implement AdjustmentListener interface ,it has method ,ites general from is as follows.

 public void adjustmentValueChanged(AdjustmentEvent ae)

// Demonstrate scroll bars.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="SBDemo" width=300 height=200>

</applet>

*/

public class SBDemo extends Applet implements AdjustmentListener, MouseMotionListener

{

 String msg = "";

 Scrollbar vertSB, horzSB;

 public void init()

 {

 int width = Integer.parseInt(getParameter("width"));

 int height = Integer.parseInt(getParameter("height"));

 vertSB = new Scrollbar(Scrollbar.VERTICAL,0, 1, 0, height);

 horzSB = new Scrollbar(Scrollbar.HORIZONTAL,0,1, 0, width);

 System.out.println("width:"+width);

 System.out.println("height:"+height);

 add(vertSB);

 add(horzSB);

 // register to receive adjustment events

 vertSB.addAdjustmentListener(this);

 horzSB.addAdjustmentListener(this);

 addMouseMotionListener(this);

 }

 public void adjustmentValueChanged(AdjustmentEvent ae)

 {

 repaint();

 }

 // Update scroll bars to reflect mouse dragging.

 public void mouseDragged(MouseEvent me)

 {

 int x = me.getX();

 int y = me.getY();

 vertSB.setValue(y);

 horzSB.setValue(x);

 repaint();

 }

 // Necessary for MouseMotionListener

 public void mouseMoved(MouseEvent me)

 {

 }

 // Display current value of scroll bars.

 public void paint(Graphics g)

 {

 msg = "Vertical: " + vertSB.getValue();

 msg += ", Horizontal: " + horzSB.getValue();

 g.drawString(msg, 6, 160);

 // show current mouse drag position

 g.drawString("*", horzSB.getValue(),

 vertSB.getValue());

 }

}//end

Output:

Using a TextField:
The TextField class implements a single-line text-entry area, usually called an edit control.

TextField defines the following constructors:

TextField()

TextField(int numChars)

TextField(String str)

TextField(String str, int numChars)

The first version creates a default text field. The second form creates a text field that is

numChars characters wide. The third form initializes the text field with the string contained

in str. The fourth form initializes a text field and sets its width.

To obtain the string currently contained in the text field, call getText(). To set the text, call

setText(). These methods are as follows:

String getText()

void setText(String str)

Here, str is the new string.

Handling TextField:
The following example demonstrates you how to process or handle ActionEvent which is

generated from TextField.Press ENTER key after text is entered in TextField,you can see

output.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

 <applet code="AwtApp2" width="300" height="300">

 </applet>

*/

public class AwtApp2 extends Applet implements ActionListener

{

 TextField tf1;

 String s="";

 public void init()

 {

 tf1=new TextField(15);

 add(tf1);

 tf1.addActionListener(this);

 }

 public void actionPerformed(ActionEvent ae)

 {

 s="entered text:"+tf1.getText();

 repaint();

 }

 public void paint(Graphics g)

 {

 g.drawString(s,75,75);

 }

}

Output:

Using a TextArea:
Sometimes a single line of text input is not enough for a given task. To handle these

situations, the AWT includes a simple multiline editor called TextArea. Following is one of

the constructor for TextArea:

TextArea(String str, int numLines, int numChars)

Here, numLines specifies the height, in lines, of the text area, and numChars specifies its

width, in characters. Initial text can be specified by str.

// Demonstrate TextArea.

import java.awt.*;

import java.applet.*;

/*

<applet code="TextAreaDemo" width=300 height=250>

</applet>

*/

public class TextAreaDemo extends Applet

{

 public void init()

 {

 String val = "There are two ways of constructing " +

 "a software design.\n" +

 "One way is to make it so simple\n" +

 "that there are obviously no deficiencies.\n" +

 "And the other way is to make it so complicated\n" +

 "that there are no obvious deficiencies.\n\n" +

 " -C.A.R. Hoare\n\n" +

 "There's an old story about the person who wished\n" +

"his computer were as easy to use as his telephone.\n" +

"That wish has come true,\n" +

"since I no longer know how to use my telephone.\n\n" +

" -Bjarne Stroustrup, AT&T, (inventor of C++)";

 TextArea text = new TextArea(val, 10, 30);

 add(text);

 }

}

Output:

Understanding Layout Managers:
All of the components that we have shown so far have been positioned by the default layout

manager.A layout manager automatically arranges your controls within a window by using

some type of algorithm. Each Container object has a layout manager associated with it. A

layout manager is an instance of any class that implements the LayoutManager interface.

The layout manager is set by the setLayout() method. The setLayout() method has the

following general form:

void setLayout(LayoutManager layoutObj)

Here, layoutObj is a reference to the desired layout manager.

you will need to determine the shape and position of each component manually,using the

setBounds() method defined by Component.

FlowLayout
FlowLayout is the default layout manager. FlowLayout implements a simple layout style,

which is similar to how words flow in a text editor. Components are laid out from the upper-

left corner, left to right and top to bottom.

Here are the constructors for FlowLayout:

FlowLayout()

FlowLayout(int how)

FlowLayout(int how, int horz, int vert)

The first form creates the default layout, which centers components and leaves five pixels of

space between each component. The second form lets you specify how each line is aligned.

Valid values for how are as follows:

FlowLayout.LEFT

FlowLayout.CENTER

FlowLayout.RIGHT

These values specify left, center, and right alignment, respectively. The third form allows you

to specify the horizontal and vertical space left between components in horz and vert,

respectively.

// Use left-aligned flow layout.

 import java.awt.*;

 import java.awt.event.*;

 import java.applet.*;

 /*

 <applet code="FlowLayoutDemo" width=250 height=200>

 </applet>

 */

 public class FlowLayoutDemo extends Applet

 implements ItemListener

 {

 String msg = "";

 Checkbox Win98, winNT, solaris, mac;

 public void init()

 {

 // set left-aligned flow layout

 setLayout(new FlowLayout(FlowLayout.LEFT));

 Win98 = new Checkbox("Windows 98/XP", null, true);

 winNT = new Checkbox("Windows NT/2000");

 solaris = new Checkbox("Solaris");

 mac = new Checkbox("MacOS");

 add(Win98);

 add(winNT);

 add(solaris);

 add(mac);

 // register to receive item events

 Win98.addItemListener(this);

 winNT.addItemListener(this);

 solaris.addItemListener(this);

 mac.addItemListener(this);

 }

 // Repaint when status of a check box changes.

 public void itemStateChanged(ItemEvent ie)

 {

 repaint();

 }

 // Display current state of the check boxes.

 public void paint(Graphics g)

 {

 msg = "Current state: ";

 g.drawString(msg, 6, 80);

 msg = " Windows 98/XP: " + Win98.getState();

 g.drawString(msg, 6, 100);

 msg = " Windows NT/2000: " + winNT.getState();

 g.drawString(msg, 6, 120);

 msg = " Solaris: " + solaris.getState();

 g.drawString(msg, 6, 140);

 msg = " Mac: " + mac.getState();

 g.drawString(msg, 6, 160);

 }

}

Output:

BorderLayout:
The BorderLayout class implements a common layout style for top-level windows. It has

four narrow, fixed-width components at the edges and one large area in the center. The four

sides are referred to as north, south, east, and west. The middle area is called the center. Here

are the constructors defined by BorderLayout:

BorderLayout()

BorderLayout(int horz, int vert)

The first form creates a default border layout. The second allows you to specify the horizontal

and vertical space left between components in horz and vert, respectively. BorderLayout

defines the following constants that specify the regions:

BorderLayout.CENTER BorderLayout.SOUTH

BorderLayout.EAST BorderLayout.WEST

BorderLayout.NORTH

When adding components, you will use these constants with the following form of add(),

which is defined by Container:

void add(Component compObj, Object region);

Here, compObj is the component to be added, and region specifies where the component will

be added.

// Demonstrate BorderLayout.

 import java.awt.*;

 import java.applet.*;

 import java.util.*;

 /*

 <applet code="BorderLayoutDemo" width=400 height=200>

 </applet>

 */

 public class BorderLayoutDemo extends Applet

 {

 public void init()

 {

 setLayout(new BorderLayout());

 add(new Button("This is across the top."),BorderLayout.NORTH);

 add(new Label("The footer message might go here."),BorderLayout.SOUTH);

 add(new Button("Right"), BorderLayout.EAST);

 add(new Button("Left"), BorderLayout.WEST);

 String msg = "The reasonable man adapts " +"himself to the world;\n" +"the unreasonable

one persists in " +

 "trying to adapt the world to himself.\n" + "Therefore all progress depends " +"on the

unreasonable man.\n\n" +

 " - George Bernard Shaw\n\n";

 add(new TextArea(msg), BorderLayout.CENTER);

 }

}

Output:

Using Insets

Sometimes you will want to leave a small amount of space between the container that holds

your components and the window that contains it. To do this, override the getInsets()

method that is defined by Container. This function returns an Insets object that contains the

top, bottom, left, and right inset to be used when the container is displayed. The constructor

for Insets is shown here:

Insets(int top, int left, int bottom, int right)

The values passed in top, left, bottom, and right specify the amount of space between the

container and its enclosing window.

The getInsets() method has this general form:

Insets getInsets()

GridLayout:
GridLayout lays out components in a two-dimensional grid. When you instantiate a

GridLayout, you define the number of rows and columns. The constructors supported by

GridLayout are shown here:

GridLayout()

GridLayout(int numRows, int numColumns)

GridLayout(int numRows, int numColumns, int horz, int vert)

The first form creates a single-column grid layout. The second form creates a grid layout with

the specified number of rows and columns. The third form allows you to specify the

horizontal and vertical space left between components in horz and vert, respectively.

// Demonstrate GridLayout

 import java.awt.*;

 import java.applet.*;

 /*

 <applet code="GridLayoutDemo" width=300 height=200>

 </applet>

 */

 public class GridLayoutDemo extends Applet

 {

 static final int n = 4;

 public void init()

 {

 setLayout(new GridLayout(n, n));

 setFont(new Font("SansSerif", Font.BOLD, 24));

 for(int i = 0; i < 15; i++)

 {

 add(new Button("" + i));

 }

 }

}

Output:

CardLayout
The CardLayout class is unique among the other layout managers in that it stores several

different layouts. This can be useful for user interfaces with optional components that can be

dynamically enabled and disabled upon user input.CardLayout provides these two

constructors:

CardLayout()

CardLayout(int horz, int vert)

The first form creates a default card layout. The second form allows you to specify the

horizontal and vertical space left between components in horz and vert, respectively.

you will use this form of add() when adding cards to a panel:

void add(Component panelObj, Object name);

Here, name is a string that specifies the name of the card whose panel is specified by

panelObj.After you have created a deck, your program activates a card by calling one of the

following methods defined by CardLayout:

void first(Container deck)

void last(Container deck)

void next(Container deck)

void previous(Container deck)

void show(Container deck, String cardName)

Here, deck is a reference to the container (usually a panel) that holds the cards, and cardName

is the name of a card.

// Demonstrate CardLayout.

 import java.awt.*;

 import java.awt.event.*;

 import java.applet.*;

 /*

 <applet code="CardLayoutDemo" width=300 height=100>

 </applet>

 */

 public class CardLayoutDemo extends Applet

 implements ActionListener, MouseListener

 {

 Checkbox Win98, winNT, solaris, mac;

 Panel osCards;

 CardLayout cardLO;

 Button Win, Other;

 public void init()

 {

 Win = new Button("Windows");

 Other = new Button("Other");

 add(Win);

 add(Other);

 cardLO = new CardLayout();

 osCards = new Panel();

 osCards.setLayout(cardLO); // set panel layout to card layout

 Win98 = new Checkbox("Windows 98/XP", null, true);

 winNT = new Checkbox("Windows NT/2000");

 solaris = new Checkbox("Solaris");

 mac = new Checkbox("MacOS");

 // add Windows check boxes to a panel

 Panel winPan = new Panel();

 winPan.add(Win98);

 winPan.add(winNT);

 // Add other OS check boxes to a panel

 Panel otherPan = new Panel();

 otherPan.add(solaris);

 otherPan.add(mac);

 // add panels to card deck panel

 osCards.add(winPan, "Windows");

 osCards.add(otherPan, "Other");

 // add cards to main applet panel

 add(osCards);

 // register to receive action events

 Win.addActionListener(this);

 Other.addActionListener(this);

 // register mouse events

 addMouseListener(this);

 }

 // Cycle through panels.

 public void mousePressed(MouseEvent me)

 {

 cardLO.next(osCards);

 }

 // Provide empty implementations for the other MouseListener methods.

 public void mouseClicked(MouseEvent me)

 {

 }

 public void mouseEntered(MouseEvent me)

 {

 }

 public void mouseExited(MouseEvent me)

 {

 }

 public void mouseReleased(MouseEvent me)

 {

 }

 public void actionPerformed(ActionEvent ae)

 {

 if(ae.getSource() == Win)

 {

 cardLO.show(osCards, "Windows");

 }

 else

 {

 cardLO.show(osCards, "Other");

 }

 }

}

Output:

Working with Frame Windows:
The type of window you will most often create is derived from Frame. As mentioned, it

creates a standard-style window.Here are two of Frame’s constructors:

Frame()

Frame(String title)

The first form creates a standard window that does not contain a title. The second form

creates a window with the title specified by title. The setSize() method is used to set the

dimensions of the window. Its signature is

shown here:

void setSize(int newWidth, int newHeight)

The size of the window is specified by newWidth and newHeight

After a frame window has been created, it will not be visible until you call setVisible(). Its

signature is shown here:

void setVisible(boolean visibleFlag)

The component is visible if the argument to this method is true. Otherwise, it is hidden.

You can change the title in a frame window using setTitle(), which has this general form:

void setTitle(String newTitle)

Here, newTitle is the new title for the window.

Closing a Frame Window:
When using a frame window, your program must remove that window from the screen when

it is closed, by calling setVisible(false). To intercept a window-close event, you must

implement the windowClosing() method of the WindowListener interface. Inside

windowClosing(), you must remove the window from the screen.

//Frame Demo

import java.awt.*;

import java.awt.event.*;

//you will subclass Frame to create a FrameWindow

 class ExFrame extends Frame

 {

 ExFrame()

 {

 setSize(300,300);

 setTitle("First Frame");

 setVisible(true);

 addWindowListener(new CloseWin(this));

 }

 }

//closing window

 class CloseWin extends WindowAdapter

 {

 ExFrame e;

 CloseWin(ExFrame ef)

 {

 e=ef;

 }

 public void windowClosing(WindowEvent w)

 {

 e.setVisible(false);

 }

 }

class DemoFrame

{

 public static void main(String args[])

 {

 ExFrame f=new ExFrame();

 }

}

Output:

Dialog Boxes:
Often, you will want to use a dialog box to hold a set of related controls. Dialog boxes are

primarily used to obtain user input. They are similar to frame windows, except that dialog

boxes are always child windows of a top-level window. Also, dialog boxes don’t have menu

bars. Dialog boxes are of type Dialog. Two commonly used constructors are shown here:

Dialog(Frame parentWindow, boolean mode)

Dialog(Frame parentWindow, String title, boolean mode)

Here, parentWindow is the owner of the dialog box. If mode is true, the dialog box is

modal.Otherwise, it is modeless. The title of the dialog box can be passed in title. Generally,

you will subclass Dialog, adding the functionality required by your application.

//DialogBox Demo

import java.awt.*;

import java.awt.event.*;

class Frame1 extends Frame implements ActionListener

{

 Button b1;

 Frame1()

 {

 setLayout(new FlowLayout());

 b1=new Button("ok");

 add(b1);

 b1.addActionListener(this);

 addWindowListener(new Close2(this));

 }

 public void actionPerformed(ActionEvent ae)

 {

 DialogExample d=new DialogExample(this);

 d.setSize(200,200);

 d.setVisible(true);

 }

}

//you will subclass Dialog to create dialogbox

class DialogExample extends Dialog implements ActionListener

{

 Button b2;

 DialogExample(Frame1 f1)

 {

 super(f1,"DEMO",false);

 setLayout(new FlowLayout());

 b2=new Button("close");

 add(b2);

 b2.addActionListener(this);

 }

 public void actionPerformed(ActionEvent ae)

 {

 this.dispose();

 }

}

class Close2 extends WindowAdapter

{

 Frame1 f3;

 Close2(Frame1 f2)

 {

 f3=f2;

 }

 public void windowClosing(WindowEvent we)

 {

 f3.setVisible(false);

 }

}

class DialogEx

{

 public static void main(String args[])

 {

 Frame1 f=new Frame1();

 f.setSize(400,400);

 f.setVisible(true);

 f.setTitle("Demo Frame");

 }

}

Output:

Menu Bars and Menus:
First create menu bar and then create menu ,next create menu item and then add menu item to

menu ,menu to menu bar.To create a menu bar, first create an instance of MenuBar. This

class only defines the default constructor. Next, create instances of Menu that will define the

selections displayed on the bar. Following are the constructors for Menu:

Menu()

Menu(String optionName)

Here, optionName specifies the name of the menu selection.Individual menu items are of type

MenuItem. It defines these constructors:

MenuItem()

MenuItem(String itemName)
Here, itemName is the name shown in the menu.

//Menu Demo

import java.awt.*;

import java.awt.event.*;

class MenuFrame extends Frame implements ActionListener

{

 MenuBar mbr;

 Menu file,edit;

 MenuItem m1,m2,m3,m4,m5,m6;

 MenuFrame()

 {

 setSize(300,300);

 setVisible(true);

 setTitle("Menu Frame");

 mbr=new MenuBar();

 setMenuBar(mbr);

 file=new Menu("File");

 edit=new Menu("Edit");

 m1=new MenuItem("New");

 m2=new MenuItem("Save");

 m3=new MenuItem("Close");

 m4=new MenuItem("Copy");

 m5=new MenuItem("Paste");

 m6=new MenuItem("Select All");

 file.add(m1);

 file.add(m2);

 file.add(m3);

 edit.add(m4);

 edit.add(m5);

 edit.add(m6);

 mbr.add(file);

 mbr.add(edit);

 CloseWin2 w=new CloseWin2(this);

 addWindowListener(w);

 m3.addActionListener(w);

 m1.addActionListener(this);

 }

 public void actionPerformed(ActionEvent ae)

 {

 ExDialog ed=new ExDialog(this);

 ed.setSize(200,200);

 ed.setVisible(true);

 }

}

class ExDialog extends Dialog implements ActionListener

{

 Button b;

 ExDialog(MenuFrame mm)

 {

 super(mm,"Demo Dialog",false);

 setLayout(new FlowLayout());

 add(b=new Button("cancel"));

 b.addActionListener(this);

 }

 public void actionPerformed(ActionEvent ae)

 {

 this.dispose();

 }

}

class CloseWin2 extends WindowAdapter implements ActionListener

{

 MenuFrame f;

 CloseWin2(MenuFrame mf)

 {

 f=mf;

 }

 public void windowClosing(WindowEvent we)

 {

 f.setVisible(false);

 }

 public void actionPerformed(ActionEvent ae)

 {

 f.setVisible(false);

 }

}

class DemoMenu

{

 public static void main(String args[])

 {

 MenuFrame m=new MenuFrame();

 }

}

Output:

